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Received: 6 September 2007 / Revised version: 15 April 2008 /
Published online: 3 June 2008 − © Springer-Verlag / Società Italiana di Fisica 2008

Abstract. Dirac showed that the existence of one magnetic pole in the universe could offer an explanation
for the discrete nature of the electric charge. Magnetic poles appear naturally in most grand unified theo-
ries. Their discovery would be of the greatest importance for particle physics and cosmology. The intense
experimental search carried out thus far has not met with success. Moreover, if the monopoles are very mas-
sive their production is outside the range of present day facilities. A way out of this impasse would be if the
monopoles bind to form monopolium, a monopole–antimonopole bound state, which is so strongly bound
that it has a relatively small mass. Under these circumstances it could be produced with present day facilities
and the existence of monopoles could be indirectly proven. We study the feasibility of detecting monopolium
in present and future accelerators.

PACS. 14.80.Hv; 95.30.Cq; 98.70.-f; 98.80.-k

1 Introduction

The theoretical justification for the existence of classical
magnetic poles, hereafter called monopoles, is that they
add symmetry to Maxwell’s equations and explain the
quantization of charge [1–3]. Dirac formulated his the-
ory of monopoles considering them basically point-like
particles, and quantum mechanical consistency conditions
lead to the so called Dirac quantization condition (DQC),

eg =
N

2
, N = 1, 2, . . . , (1)

where e is the electron charge, g the monopole mag-
netic charge, and we shall use natural units, h̄ = c = 1.
In this theory the monopole mass, m, is a parameter,
limited only by classical reasoning to m> 2 GeV [4]. From
now on we restrict our discussion to the lowest charge
monopole, i.e. N = 1 in the Dirac condition (1). In non-
Abelian gauge theories monopoles arise as topologically
stable solutions through spontaneous breaking via the Kib-
ble mechanism [5–7]. They are allowed by most grand
unified theory (GUT) models, have finite size and come out
extremely massive m > 1016 GeV. There are also models
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based on other mechanisms with masses between those
two extremes [4, 8, 9]. All these monopoles satisfy Dirac’s
quantization condition as a consequence of their monopole
structure and semiclassical quantization [10, 11].
All the attempts to discover or produce monopoles have

met with failure [4, 8, 10–14]. This lack of experimental
confirmation has led many physicist to abandon hope for
their existence. A way out of this impasse is an old idea of
Dirac [1, 2, 15], namely, that monopoles are not seen freely
because they are confined by their strong magnetic forces
forming a bound state called monopolium [16, 17].
Several cosmological scenarios compatible with all cos-

mological requirements [18–22] have been proposed [16,
23–25] with the aim of making the existence of monopo-
lium compatible with the observation of ultrahigh-energy
cosmic rays (UHECRS) [26, 27]. From these cosmological
scenarios we have learned that the study of the monop-
olium annihilation process provides us with information
regarding the existence of monopoles, even if they are diffi-
cult to detect or to produce in a free asymptotic state. This
phenomenon is not a novel feature of physics. Quark–gluon
confinement describes the strong limit of quantum chro-
modynamics, the theory of the hadronic interactions, and
their existence is proven by the detection of jets, showers
of conventional hadrons. There is, however, a main differ-
ence between the two scenarios. In the monopolium case,
the elementary constituents may be separated asymptot-
ically, when they are orbiting far from each other, if the
energy provided to the system is high enough, while in the
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quark–gluon case this is not possible. In practice, however,
there is no big difference, since due to the very high binding
energies of monopolium, asymptotic monopoles might only
be found, for short periods of time, in the center of galaxies,
or clusters of galaxies, not in our laboratories.
In the present work we aim at determining the existence

and the dynamics of monopoles in the laboratory. The phi-
losophy behind the present calculation is that the standard
model allows for the existence of monopoles, which are spin
0 bosons.1 Therefore, given the appropriate kinematics we
should be able to produce them. However, past experience
has taught us that this is not feasible because, most proba-
bly, their mass is very large and their production is outside
our present experimental capabilities. Our proposal here is
that due to the large coupling between monopole and an-
timonopole the two bind to form a low-mass monopolium
state. This state can be produced as an intermediate vir-
tual state and we study its subsequent decays. Thus, in an
indirect way monopole physics can be revealed.

2 Monopolium detection

We proceed to discuss signatures of monopolium, the
monopole–antimonopole bound state, when produced in
e+e− annihilation2. We use the low-energy effective theory
of Ginzburg and Schiller [29, 30] in order to describe the in-
teraction. This theory is based on the standard electroweak
theory, and in order to couple the monopoles to the photon
and weak bosons one considers m�mZ0 , mZ0 being the
mass of the Z0 boson, and the monopole is taken to inter-
act with the fundamental fields of the SU(2)⊗U(1) theory
before symmetry breaking, i.e., with the isoscalar field B,
in the conventional notation of the standardmodel [32, 33].
In this way the photon, γ, and the weak boson, Z0, have
the same coupling except for an additional tan θW, where
θW is the Weinberg angle, for the latter. The effective de-
scription is based on the one loop approximation of the
fundamental theory, and therefore the effective coupling is
proportional to geff∼

ω
m
g, where ω is an energy scale that is

below the monopole production threshold, thus rendering
the theory perturbative. The dynamical scheme proposed
by Ginzburg and Schiller leads to effective couplings in
a vector-like theory between the monopole and the pho-

1 The Dirac quantization condition does not specify the spin
of the monopoles. One could have chosen monopoles of spin
1/2. In this case, one could produce besides monopolium of
spin zero, decaying into two photons, monopolium of spin 1,
decaying into three photons. Since the strong coupling limit of
the Dirac equation and its non-relativistic limit are technically
complex [28], we have avoided in this first calculation those
difficulties by limiting ourselves to bosonic monopoles. The es-
timates for the production will not change much as one can
show in the limit in which the wave function is not relevant,
namely resonance.
2 The description in terms of quark–antiquark annihilation is
straightforward, although complicated by the partonic descrip-
tion of the real experimental probes, which are hadrons.

ton [29, 30], given by

gγeff = C(Jm)g
ω

m
= C(Jm)

ω

2em
, (2)

with C(Jm) ∼ 1, and ω is the photon energy, m the
monopole mass and N the monopole charge. The effective
interaction between the monopole and the Z0 becomes

gZeff = tan(θW)g
γ
eff , (3)

where θW is the Weinberg angle and naturally here ω refers
to the Z0 energy. We have used the Dirac quantization
condition to express the coupling in terms of the electron
charge.
We study the process

e+e−→A→M +A′

↪→B+C , (4)

shown in Fig. 1, where A, A′, B and C can be γ or Z0, in
all allowed combinations, andM represents a monopolium
state. We assume that the particle A′ carries away the spin
of the photon, and thereforeM represents the lowest scalar
monopolium state. We shall restrict the present calculation
to photons; then the coupling arises as a consequence of the
generalization of scalar electrodynamics [31].
The standard expression for the cross section in these

cases results in

dσ

dx
=
π

E2e
G
4M2Γee(A)A′ΓBC

(Q2−M2)2+M2Γ 2M
, (5)

where in our case

G=
2JM+1

(2se+1)(2se+1)
=
1

4
. (6)

We have written the formula such that it looks similar
to the one used in traditional decays of resonant states.
Here, x = ω2A′/M

2, 2Ee is the center of mass energy of
the collision, M represents the monopolium mass, ΓM is
for the monopolium width, and Q for the monopolium
four-momentum. The two remaining Γ will be defined
shortly. We recall that the so called unitarity bound re-
stricts the validity of the Ginzburg–Schiller approximation
toM <m/6 [10, 11]. The physical situation of interest oc-
curs whenM �m and consequently, from (2) and the fact

Fig. 1. Diagrammatic description of the reactions studied
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that ω ∼M , one gets geff ∼ g(M/m)� 1, which grants va-
lidity to the perturbative approach.
We enter now the computation of the Γ . ΓBC represents

the width of the decay of monopolium into 2γ. The calcu-
lation, following standard field theoretic techniques of the
decay of a non-relativistic bound state [34, 35], leads to

ΓBC =
32παBαC
m2

|ψM(0)|
2 . (7)

We have used the conventional approximations, namely
that the particles are on shell and that in the calculation of
the elementary process we neglect the binding energy. The
α here correspond to the photon–monopole coupling.
The second Γ corresponds really to the calculation of

the cross section for the process Mγ→ e+e−. Following
also standard techniques one arrives at

σ(Mγ→ γγ) = 32π
αeα

2
g

m2E2eω
|Ψ(0)|2 , (8)

where ω represents the energy of the initial photon and Ee
that of the leptons in the center of mass system. From the
definition of the total cross section,

Γee(A)A′ =
ωm2σ(Mγ→ γγ)

32π2
, (9)

which can be written for the purposes of our calculation as

Γee(A)A′ =
αeαAαA′

E2e
|Ψ(0)|2 . (10)

Finally (5) leads to the following differential cross
section:

dσ

dwA′
= π2

ω3A′ω
2
Bω
2
C

α3M4m8E2e

×
|Ψ(0)|4

(
(2Ee−ωA′)2−ω

2
A′
−M2

)2
+M2Γ 2M

.

(11)

In order to obtain the total cross section in the center
of mass, this expression has to be integrated subject to
the kinematical constraints arising from energy momen-
tum conservation,

ωA′+ωB+ωC = 2Ee ,

kA′ +kB+kC = 0 . (12)

From now on α will always denote the fine structure con-
stant (1/137).
In order to go ahead with the calculation, one has to ob-

tain the wave function corresponding to monopolium. This
is done and analyzed in the next section.

3 Monopolium potential

Our calculation of monopolium reduces to a quantum me-
chanical bound state calculation, which provides us with

its mass and its wave function in the relative frame. We
shall use a static non-relativistic approximation, and there-
fore our first step is to define the potential that binds the
poles to form monopolium.
We regard the monopole as possessing some spatial ex-

tension in line with the arguments of Schiff and Goebel
[36, 37]. This assumption makes the potential energy of the
monopole–antimonopole interaction non-singular when
the relative separation goes to zero. Mathematically we de-
scribe this feature by means of an exponential cut-off in the
interaction potential,

V (r) =−g2
(
1− exp(−µr)

r

)
. (13)

We fix the cut-off parameter µ by physical arguments.
Equation (13) has the following properties: for r→∞ we
have

V (r)→−
g2

r
, (14)

and for r→ 0

V (r)→−g2µ+ . . . (15)

When the monopole and antimonopole are closest to each
other the distance between the corresponding centers O
and O′ is rOO′ ∼ 2rm, where rm is the pole radius. For
our estimates rm ∼ 4rclassical seems reasonable, since this
choice will allow the monopolium bound state to have a
very small mass for strong binding. Then

µ= 2
m

g2
. (16)

Consequently, the effective potential finally becomes

V (r) =−g2
1− exp

(
−2 r
rclassical

)

r
. (17)

Note that with our choice, for r→ 0, V (r)→−2m. Thus,
the mass of the bound state becomes the energy over the
minimum

M = 2m+Ebinding . (18)

Summarizing, our analysis shows that the cut-off po-
tential is quite close to the Coulomb potential as long
as the monopole radius, rm, is larger than the classical
monopole radius rclassical. Thus, we shall use the “mag-
netic” Coulomb potential (Fig. 2) as our interaction in
what follows. However, it is important to note, as will
be shown next, that the lowest energy states of the cut-
off potential correspond to excited states of the magnetic
Coulomb potential (Fig. 2).
We use a non-relativistic approximation whose validity

we shall shortly discuss. Solving the Schrödinger equation
for monopoliumwe obtain its binding energy, and therefore
the mass of the system is given by [38]

M = 2m−

(
1

8α

)2
m

n2
> 0 , (19)
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Fig. 2. The figure on the left shows the Coulomb and the Coulomb with exponential cut-off potentials. The figure on the right
shows energy levels of the Coulomb potential used as energy levels of the cut-off potential. Note that the lowest energy states of
the cut-off potential correspond to excited states of the Coulomb potential

where α is the fine structure constant and n is the principal
quantum number. We see that we can reach zero mass for
n∼ 12 and therefore for n > 17 the formula is well defined
and describes all values ofM :

0≤M ≤ 2m.

The monopolium radius is given by

rM

rclassical
= 48α2n2 . (20)

Now we introduce the size parameter ρ= rM/rclassical.
By substituting n2 from (20) into (19), we obtain an

equation for the monopolium mass as a function of its size,
namely

M =m

(
2−
3

4ρ

)
, (21)

which is plotted in Fig. 3. Although for low values of ρ
our approximation becomes worse, we expect that the
soft behavior of the wave function at the origin allows
for order of magnitude estimates. This formula is ex-
tremely important in our development because it transmu-
tates principal quantum numbers of the Coulomb poten-
tial into mass scales that are crucial to substantiate our
scenario.
The perturbative expansion of Ginzburg and Schiller

used in the calculation of the production process lim-
its, due to unitarity, the maximum value of the ratio of
M
m
to values < 1/6 [10, 11]. We incorporate this exter-

nal additional requirement to the bound state calculation,
which is free from it, by showing the bound in all relevant
figures.
Before we continue, a discussion of the validity of the

non-relativistic approximation is necessary. Let us there-
fore analyze how relativistic corrections will affect our cal-
culation. As the monopoles are spin 0 bosons one may de-
scribe the system by a Schrödinger type equation and the

first corrections to it do not start at order β2 but at order
β4 (apart from merely the kinetic terms) [28]. These addi-
tional terms to order β6 are

−
∆4

8m4
, −

∆6

16m6
,

g2

32m5

[
∆2,

[
∆2,
1

r

]]
. (22)

They can be treated as perturbations to the Schrödinger
equation. In the appendix we give a detailed account of the
calculation of these corrections.
We show in Fig. 4 that the correction to the potential

energy can be neglected safely, for an order of magnitude
estimate, if the kinetic terms are fully taken into account.
Moreover, we show that the minimal relativistic correction,
consisting of the simplest approximation to the Klein–
Gordon equation, namely in incorporating the mass [28],

Fig. 3. Mass of the monopolium as a function of the size
parameter. The unitarity bound corresponding to ρ ∼ 0.41 is
shown



L.N. Epele et al.: Monopolium: the key to monopoles 91

Fig. 4. Shown are the non-relativistic β (solid), the relativis-
tic bosonic βrel (dashed), the first order correction βrel (dot-

dashed) and the ratio of an upper bound to the order β4 po-
tential term to the binding energy to order β4 with correct
kinematics (dotted). The unitarity bound is also shown

leads to a velocity

β
(1)
rel =

β

1+ β
2

2

, (23)

which is almost indistinguishable from the more complete
one given by (A.6).
Furthermore, since our potential is cut off for small

values of r we expect a slow down of the particles with re-
spect to the conventional Coulomb potential and therefore
the non-relativistic treatment is more accurate than in the
pure Coulomb case. Moreover, the calculation for the wave
function at the origin is less sensitive to the short range be-
havior of the potential than the velocity, which depends on
the slope of the wave function.

4 Cross section estimates

We proceed to use the formalism just developed to describe
the production and decay of monopolium. The analysis
that follows is physically appealing because the mass of
monopoliummay be chosen to be small, much smaller than
the monopole mass; thus detection can occur at relatively
low energies. Monopolium production is accompanied by
radiation, which is also described by the formalism. Fur-
thermore the calculation is easy to perform and physically
understandable.
It seems therefore safe to go ahead to calculate the mo-

nopolium decay probability as a function of ρ. The range of
values of ρ is 3/8< ρ <∞. Moreover,

n=
1

4α

√
ρ

3
,

and therefore, given a value of ρ, one can determine n and
this fixes |ψ(0)|2, which is what one needs for computing

the decay probability. In summary, the calculation seems
to be feasible in terms of only one mass scale, the mass of
the monopole,m, and one parameter, ρ.
Let us consider the case when monopolium is produced

in its ground state; its wave function will have �= 0. Con-
sequently [38]

ψn,0,0 =
1

a3/2
Nn,0Fn,0

(
2r

na

)
Y 00 (Ω) , (24)

with

a=
1

mre2
, Nn,0 =

2

n2

√
(n−1)!

(n!)3
,

wheremr is the reduced mass and

Fn,0(x) = e
−1/2xL1n−1(x) ;

L1n−1(x) =
n−1∑

s=0

(−1)s
(n!)2

(n− s−1)!(s+1)!s!
xs .

We need |ψn,0,0(0)|. Then, taking into account that

lim
x→0
L1n−1(x) = nn! , lim

x→0
Fn,0(x) = nn! ,

one has

|ψn,0,0(0)|=
1

√
2π(an)3/2

. (25)

The reduced mass of the monopolium system is m/2
and the Dirac condition (1) can be written as

g2e2 =
1

4
⇒ αgαe =

1

4
,

and one gets

|ψn,0,0(0)|=
1
√
π

(
m

8αen

)3/2
. (26)

Finally, one can write the wave function in terms of the
variable ρ to obtain

|ψn,0,0(0)|=
1
√
π

(√
3m

2
√
ρ

)3/2

. (27)

This is the main ingredient to be included in the expression
for the cross section that was computed before.
We are interested in spin 0 monopoles with n large

and �= 0. Replacing the value of the wave function given
in (27), and using the relation betweenM and ρ, the cross
section, (11), becomes

dσ

dωA′
=

1

α3M2m2E2e

(
2−
M

m

)3

×
ω3A′ω

2
Bω
2
C[(

(2Ee−ωA′)2−ω
2
A′
−M2

)2
+M2Γ 2M

] .

(28)
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Fig. 5. Logarithmic plot of the cross section at resonance (in fb) (left) and of the monopolium width (in GeV) (right) as a function
of the monopolium massM (in GeV). The vertical lines represent the Tevatron (M ∼ 265 GeV) [13] and the LHC (M ∼ 1100 GeV)
bounds. In the left plot the full lines have been calculated for a beam energy slightly larger than the monopolium mass, 2Ee =M+
100 GeV, to avoid the threshold zero and maximize monopolium production. The different curves are obtained for the values of
M/m= 0.01 (solid) andM/m= 0.001 (dotted)

The case that A= Z0, A
′ = B = γ and C = γ also con-

tributes to the 3γ cross section. We omit it here for sim-
plicity, since we are just estimating the observability of the
process, not its precise magnitude.
The total cross section is obtained by performing the

integration

σ(ωA′ , ωC) =

∫ ωA′

0

dω
dσ(ω, ωC)

dω
. (29)

It is evident from (28) that the cross section has a resonant
structure for

ωA′ =Ee

(

1−

(
M

2Ee

)2)

.

In order to maximize the cross section we shall set ourselves
on top of the resonant peak, and we moreover shall choose

ωB = ωC =
Ee

2

(

1+

(
M

2Ee

)2)

,

which are the values for the energy that maximize the nu-
merator, ω2Bω

2
C , while satisfying the conservation

equations (12).
We shall make a further approximation, namely that

the monopolium width is dominated by the 2γ decay,

ΓM ∼ ΓBC(ωB = ωC =M/2)

=
1

8α2

(
M

m

)3 (
2−
M

m

)3/2
M . (30)

This width does not take into account the Z0 decays, which
will increase it. However, they will also increase the nu-
merator. Thus, for the purposes of our calculation, this
difference is not relevant at the level of order of magnitude

Fig. 6. Logarithmic plot of the cross section at resonance (in
fb) (left) as a function of beam energy Ee for a fixed mass of
the monopolium mass of M = 1000 GeV. The different curves
are obtained for the values of M/m= 0.01 (solid) andM/m =
0.001 (dotted)

estimates. It is very important to note that in this case
the cross section is independent of the monopolium wave
function, since the dependence appearing in the numerator
cancels exactly the dependence appearing in the calcula-
tion of the width.
The results of our calculation are shown in Figs. 5 and 6,

on which we now comment.
We have two parameters in our calculation, namely

the monopole mass m and the monopolium mass M . We
use in the plots M and the ratio M/m. Unitarity im-
poses a restriction on the latter, M/m < 0.15, as can be
seen in Fig. 3. We show data for two values of this ratio,
0.01, which serves for the purpose of developing our idea
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and clearly satisfies the unitarity bound, and 0.001, which
could realize certain cosmological monopole scenarios.
In Fig. 5 we show on the left the cross section at reson-
ance as a function on the mass of the monopolium and
for a beam energy just above the monopolium threshold,
i.e. 2Ee =M +100GeV. This extreme case leads to low
values for the cross section due to the vicinity of the thresh-
old zero (see for comparison the values in Fig. 6 away from
threshold), but it is physically very appealing because the
photon of the first vertex, A′, carries almost no energy and
we have a representation of the scalar monopolium decay
with two photons appearing back to back with an energy
ofM/2. In this case the photon of the first vertex simply is
present to carry away the spin of the intermediate photon
but (almost) no energy. We see that the value of the cross
section increases asM/m decreases. Thus, initially monop-
olium made of heavier monopoles, for a fixed mass, would
be easier to see, if it were not because as shown in the right
figure, their width decreases dramatically.
We include the limits of the Tevatron and LHC. Note,

that both in the Tevatron and in LHC, the expected
processes are the inverse of the studied here, namely
γ−γ fusion (and other fusion alternatives) of producing
monopolium [29, 30, 39].
Let us emphasize at this point, looking at our results, the

beauty of the two scale scenario. The existence of an addi-
tional scale, besides the monopole mass m, represented in
our scheme by the parameterM/m, renders the present in-
vestigation exciting. Ifmonopolium is a strongly bound sys-
tem, it is its relatively lowmass,M , which limits the useful-
ness of accelerators for monopole physics and not the mass
of themonopole, conventionally assumed to be very large. If
monopoles could bind to an almost zero mass bound state,
we could study monopole physics at relatively low energies.
In Fig. 6 we show for a fixed monopolium mass how the

peak cross section changes with the energy of the beams.
We see that the threshold effect is narrow and that the
cross section jumps several orders of magnitude with beam

Fig. 7. Logarithmic plot of the differential in fb/GeV (left) and total cross section in fb (right) as a function of beam energy Ee for
a fixed mass of the monopolium of 1000 GeV. The different curves are obtained for the values ofM/m= 0.01 (solid) andM/m =
0.001 (dotted)

energy. Thus 3γ detection seems much more favorable than
the 2γ one shown before. The signal is clear: one photon re-
coiling against two others, whose dynamics describes a res-
onant structure. Once the threshold effect disappears, the
cross section is relatively flat with energy.
In Fig. 7, we fix the outcoming energy of the photon

ωA′ =M/2 and study the behavior with beam energy
around the resonance. The left curve shows the differential
cross section, while the right one is for the total cross sec-
tion. The resonance effect is apparent and also the wave
function effect. As is seen, away from resonance, the wave
function effect is important and the cross section decays
faster for larger monopole masses. We use for the figures
M = 1000GeV.
Let us summarize our findings. In our two scale sce-

nario,

1. the differential and total cross sections have a resonant
peak (see Fig. 7) determined by the monopolium mass
M ;

2. the order of magnitude of the cross section on reson-
ance, which is wave function independent, rises slowly
with beam energy, once we are away from the thresh-
old, and is consistent with observability in present day
machines [29, 30, 39–42] for monopolium masses of up
to 2000GeV (see Fig. 5) and monopole masses only
limited by the validity of our theoretical approach;

3. a similar analysis can be carried out for γZ0 and 2Z0
decays;

4. a similar analysis can be carried out for hadronic
production, complicated by the inclusion of the sub-
structure of the intervening hadrons.

5 Conclusions

We have performed an investigation looking for hints of
the monopoles so far not seen. Our working assumption is
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that monopoles appear strongly bound forming monopo-
lium, a monopole–antimonopole bound state, due to their
strong electromagnetic interaction.
We develop a scenario in which monopolium is pro-

duced and disintegrates into 2γ, γZ0 and 2Z0. We give
details on the structure and magnitude of the first of these
processes to determine the observability. We develop a two
energy scale scenario, whose

1. low scale is governed by monopolium and we consider
for quantitative purposes that it could be reachable by
present day machines;

2. and whose high-energy scale is governed by the mono-
pole mass and arises through the structure of monopo-
lium, with

m�Ee .

Under these circumstances we can estimate the cross
section as a function of the monopolium mass. The mono-
pole mass is determined by the value of the cross section
and any mass is attainable, the limitations only arising
from the approximations used in our model.
Since at present we cannot calculate the monopolium

parameters, M and ΓM, the experimental endeavor is not
easy. There are however some features which might sim-
plify the task:

1. the resonance peak of the monopolium can be found in
the four exit channels 3γ, 2γZ0, γ2Z0 and 3Z0;

2. monopolium can be produced in an excited state be-
fore it annihilates; thus the annihilation process will be
accompanied by a Rydberg radiation spectrum;

3. the same processes can be studied hadronically, the
only complication arising from the inclusion of the
hadron sub-structure.

The calculated values for the cross sections, corres-
ponding to reasonable monopolium mass scenarios, render
our calculation interesting and this line of research worth
pursuing.
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Appendix : Relativistic corrections

Let us define the relativistic factor β = v/c through the
equation

β2 = 〈nlmlms|
p2

m2
|nlmlms〉 . (A.1)

It can easily be calculated using the exact expectation
value to give [38]

β =

√
3

4ρ
. (A.2)

This result, which coincides with the semiclassical
treatment and the use of Ehrenfest’s theorems, namely
equating the centrifugal and Coulomb forces,

m
v2

r
=
e2

r2
⇒
p2

2m
=
1

2

e2

r
,

leads to

E =
p2

2m
−
e2

r
=
p2

2m
−
p2

m
=−

p2

2m
.

This corresponds to equating the absolute values of the ki-
netic and the binding energies,

kinetic energy = |binding energy| , (A.3)

which gives

p2

m
=

(
1

8α

)2
m

n2
,

which gives rise, using (20), to

p2

m2
=
3

4

1

ρ
.

Thus, the non-relativistic calculation is only truly valid for
ρ > 3/4.
One can easily incorporate the kinetic terms in (22) to

the lowest order approximation, leading to

m

(
β2

2
−
β4

8
+
β6

16
+ . . .

)
. (A.4)

Performing the virial theorem calculation,

Etotal =m

(
1+
β2

2
−
β4

8
+
β6

16

)
, (A.5)

and therefore the relativistic velocity turns out to be

βrel =
β

1+ β
2

2 −
β4

8 +
β6

16

. (A.6)

The non-relativistic velocity, β, and the relativistic one,
βrel, are shown in Fig. 4. Finally, the correction to the po-
tential compared to the binding energy becomes

g2

32m4

〈[
∆2,
[
∆2, 1

r

]]〉

|Ebinding|
<
g2

32

p3

m3
≈
137

128
β3rel . (A.7)

The upper bound is also shown in Fig. 4.
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